Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Tissue Engineering Research ; (53): 2862-2866, 2015.
Article in Chinese | WPRIM | ID: wpr-464280

ABSTRACT

BACKGROUND:Transformation growth factor-β(TGF-β) and brain-derived neurotrophic factor (BDNF) are the main regulatory factors in the process of spinal cord injury. There are many researches for TGF-βand BDNF pathogenesis in the spinal cord injury, but the regulation of Ginsenoside Rg1 intervention on TGF-βand BDNF in the spinal cord injury is rarely reported. OBJECTIVE:To observe the effect of Ginsenoside Rg1 intervention on TGF-βand BDNF expression at themolecular protein levels, and to study the protection effect of Ginsenoside Rg1 on the spinal cord and nerve function after spinal cord injury. METHODS:Experimental rats were randomly divided into blank control group, model group and Ginsenoside Rg1 group. In the model and Ginsenoside Rg1 groups, spinal cord injury model was established with the impact method in rats. In the Ginsenoside Rg1 group, rats were intraperitoneal y injected with 10 mg/kg Ginsenoside Rg1 24 hours after modeling, once per day, for 14 days. Rats in the blank control and model groups were injected with equal saline. RESULTS AND CONCLUSION:Compared with the control group, serum malondialdehyde levels increased, the content of superoxide dismutase decreased, TGF-βexpression levels in spinal cord tissue increased, and BDNF expression levels decreased in the model and Ginsenoside Rg1 groups. Compared with the model group, serum malondialdehyde levels decreased, the content of superoxide dismutase increased, TGF-βexpression levels in spinal cord tissue decreased, and BDNF expression levels increased in the Ginsenoside Rg1 group. Ginsenoside Rg1 can protect the injury spinal cord in rats after spinal cord injury.

2.
Chinese Journal of Tissue Engineering Research ; (53): 1580-1584, 2015.
Article in Chinese | WPRIM | ID: wpr-474482

ABSTRACT

BACKGROUND:Chinese herb extracts can restore and protect the nervous system of rats through intervention of neural stem cels. OBJECTIVE:To explore the role of ginsenosides Rg1 in the proliferation and protection of neural stem cels. METHOD:Sprague-Dawley rats at pregnant 19 days were dissected to take out fetal rats, and then the hippocampal tissues from fetal rats were isolated to extract neural stem cels. Neural stem cels were co-cultured with DMEM/F12 medium containing 50 g/L ginsenosides Rg1 as intervention group, with DMEM/F12 medium as blank control group, and with DMEM/F12 containing 0.64% phenol as positive control group, respectively. MTT assay was used to detect the proliferation of neural stem cels in each group, and western blot method to detect the protein expression of brain-derived neurotrophic factor and transforming growth factor-β in neural stem cels. RESULTS AND CONCLUSION:Rat neural stem cels were round single cels with clear border at early period after isolation but at 2 days after inoculation, the cels were adherent and aggregated into smal cel spheres. Compared with the blank control group, the proliferative rate of neural stem cels was significantly increased in the ginsenosides Rg1 group (P < 0.05), but decreased in the positive control group (P < 0.05). Compared with the blank control group, in the ginsenosides Rg1 group, the expression of brain-derived neurotrophic factor was elevated, and the expression of transforming growth factor-β was reduced, indicating ginsenosides Rg1 has a certain effect to promote the proliferation of neural stem cels as wel as to protect the neural stem cels.

SELECTION OF CITATIONS
SEARCH DETAIL